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Note 

Polynomial Series versus Sine Expansions 
for Functions with Corner 
or Endpoint Singularities 

In a review of methods that use “Whittaker cardinal” or “sine” functions, Stenger 
[l] shows that these basis functions-in combination with a change-of- 
variable-are a powerful tool for approximating a function with weak singularities 
at the ends of the interval. Although Stenger himself is careful to note that the same 
optimal convergence rate can be obtained with other basis functions, he does not 
elaborate or give examples. 

In this note, we show that the change-of-variable-not the use of sine 
functions-is the key to success in coping with endpoint singularities. We explicitly 
construct approximations using mapped orthogonal polynomials’ which have the 
property of “exponential” or “infinite order” convergence for f(x) which has weak 
singularities at the endpoints but is regular on the interior of the interval. (We 
define what we mean by a “weak” singularity in Eq (1) below.) For simplicity, most 
of the analysis is limited to functions of one variable, but corner singularities for 
two-dimensional boundary value problems are a very important application which 
will be briefly discussed at the end. 

We shall standardize the interval to x E [ - 1, 1 ] and assume f(x) has 
singularities at the endpoints of the form 

f(x) = (1 - X2Y g(x) (1) 

where g(x) is free of singularities on [ - 1, l] and where CI > 0 so that the f(x) is 
bounded even at the branch points. (This boundedness off(x) is what we mean by 
a “weak” singularity.) If we expand f(x) in a Chebyshev series, Elliott [4] has 
shown that the coefficients (for LX > 0) are 

a,-0(1/n’+*‘). (2) 

This poor convergence*oeflicients decreasing only as an algebraic function of 

’ Because of the mapping, the terms of the series will be transcendental functions of the original coor- 
dinate x. This is what makes it possible to evade the theorem that polynomials in x could not give better 
than algebraic convergence because of the singularities. 
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n-is the best possible for polynomials, and has prompted a search for alternatives. 
The successful options use a series of terms which are transcendental functions of x. 

Stenger [l] showed that it is possible to create an approximation through a 
three-step procedure whose error decreases exponentially rather than algebraically. 
The first step is to transform the interval x E [ - 1, 11 to y E [-co, cc] through the 
mapping 

x = tanh (ky) (3) 

where k is an arbitrary scale factor. The second step is to choose a grid spacing h 
and then approximate f( y[x]) through the “sine expansion” or “Whittaker car- 
dinal” approximation, which is 

f(y)= f f(3) sine (CY -31/h); YE [--co, 001 
,=--co 

where the “sin? function is defined by 

sine (z) 5 sin (7rz)/(rcz). (5) 

The final step is to truncate the infinite series in (4) so that we sum over a finite 
number of grid points N. Stenger [l] goes on to show that the sine expansion can 
be used to solve differential and integral equations, but for simplicity, we will 
assume f(x[ y]) is a known function. 

There are two sources of error in (4): a “grid-spacing” error because the inter- 
polation points are a finite distance h apart and a “grid-span” error because we 
must truncate the infinite sum in (4), which implicitly restricts the grid points to 
some finite span of the interval in y. Stenger shows that minimizing the combined 
effects of these two sources of error requires taking hwO( l/N”*) where N is the 
total number of grid points. The error is then O(exp [ -PN”~]) for some constant p 
provided that 

c? > 0, (6) 

which is the condition that f(x) remain bounded at x = f. 1. 
However, the key to defusing the branchpoints is the tanh-mapping. If we sub- 

stitute (3) into (l), we find 

f(xCYI)=sech*“(k~)g(xCyl) (7) 

where the lack of singularities in g(x) on [ - 1, l] implies that g(x[y]) is bounded 
for all real y. Once the problem has been converted to the interval y E [ - co, co], 
one can use any of a wide variety of alternatives to approximate the function, not 
just the sine series (4). 
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Boyd [3] shows that for a function like (7), the expansion in Hermite functions, 
$n(Yh will converge for all real y. As for the sine series, the error is 
O(exp [ -qN’/‘]) for some constant q. In terms of the original coordinate x, we are 
escaping the ineffectiveness of a polynomial series by using the transcendental basis 
functions $J y[x]) instead. 

A Hermite pseudospectral method would use a computational grid composed of 
the roots of the (N + 1)-degree Hermite function, which are separated by an average 
grid spacing of O(NP1”). (For a given N, the distance between neighboring grid 
points is variable, but does not differ much from the average.) Stenger [l] shows 
that h- O(N- l”) is usually optimum for the sine expansion as well. For either 
series, the mapping is crucial: the tanh function transforms a grid of points which is 
evenly (or almost evenly) spaced in y into a grid in x in which the gridpoints are 
clustered near the endpoints at x = + 1. The spacing of adjacent points in x 
decreases exponentially with N near the branch-points, which is precisely what is 
needed to defeat these singularities. In contrast, the Chebyshev pseudospectral 
method (without a mapping of the coordinate) would use a grid with a nearest- 
neighbor separation no smaller than 0( 1/N2); for any positive a, Eq. (2) shows that 
the highest calculated Chebyshev coefficient, aN, is proportional to a negative 
power of N also. Thus, a grid spacing which decreases algebraically fast with N gives 
an error that decays algebraically with N, too. In contrast, decreasing the grid spac- 
ing in x exponentially fast near x = f 1 gives an error which decreases exponentially 
with N also in spite of the bounded endpoint singularities. 

Estimating the constants p and q in error formulas like (7) is difficult in general, 
but it is instructive to consider the simple example 

f(y) = se& (C7@1”2~) (8) 

which is (7) for the special case a = l/2, k = (n/2)‘/*, and g(y) = 1. This choice of the 
scale factor k optimizes the convergence of the Hermite series and we find from [3] 

E Hermite( N) - O(exp [ - 1.772 N”*] ). (9) 

Using Theorem 2.1 of Lund and Riley [2] to optimize the sine grid gives 
h = (27~/N)“~ where N is the total number of interpolation points and 

Esinc(N) w O(exp [ - 1.5708 N”2]). (10) 

Thus, the series of orthogonal polynomials is superior (at least asymptotically as 
N + 03) to employing the sine expansion. 

It would be wrong to conclude, however, that the sine expansion is an inferior 
method. The difference between (9) and (10) is quite small, and sine functions are 
simpler and easier to program than Hermite series. The point is rather that the sine 
expansion is not the only choice. 
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Indeed, Boyd [S] is the basis for a third alternative for expanding functions with 
branch-points at the ends of the approximation interval. That earlier article dis- 
cusses how problems on y E [ - co, co] can be efficiently solved by mapping the 
infinite interval into [ - 1, 1 ] and then applying Chebyshev polynomials. The 
map x = tanh (ky) is poor for this purpose because it will convert a function that 
decays exponentially in y into one with singularities at x = f 1 which spoil the con- 
vergence of the Chebyshev series as shown by (2).* It is amusing to see that the 
tanh (ky) map is useful when applied in the opposite direction to convert a function 
that really is singular at x = &- 1 into one with exponentially convergent Hermite 
and sine series. This suggests the third alternative for expanding this class of 
functions: employing the tanh (ku) map to transform from [ - 1, l] to [-co, cc] 
and then using an algebraic map of the kind described in [S] to transform back to 
[ - 1, 11; the doubly-mapped Chebyshev polynomials will give exponential con- 
vergence. (Without the change of coordinates, of course, the Chebyshev series 
would converge algebraically with N.) 

The class of functions with weak endpoint singularities may seem rather special, 
but Lund and Riley [2] give a number of one-dimensional examples. Partial dif- 
ferential equations are a very rich source of examples since boundary value 
problems may have singular solutions even if the equation is linear and constant 
coefficient. The classic illustration is 

v*u= -1 (11) 

on the square [ - 1, l] x [ - 1, l] with u E 0 on all four sides of the domain. Strang 
and Fix [6] show that U(X) has singularities of the form 

24 = Y* log (r) + less singular terms (12) 

in each corner where r is the radius of a local polar coordinate centered on the cor- 
ner. Bowers and Lund [7] have reported success in solving problems like (10) 
using mapped sine expansions, but the transformed Hermite series and the double- 
mapped Chebyshev polynomials would probably be equally effective. 

The moral of this note is that there are many ways to deal with endpoint and 

corner singularities. The sine series of Stenger is simple and exponentially con- 

vergent, but there are alternative basis functions that are just as good. 
For all these pseudospectral methods, however, a change of coordinates which 

gives an exponential clustering of gridpoints near the singularities is essential. 
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